中药提取液的浓缩设备-中药提取液的浓缩设备原理-浙江启派智能

您好,欢迎您来到启派智能公司官网,网站展示图片如有侵权,请联系公司将立即删除!

24小时服务热线400-678-3557

定制化设计

专业专注

热门关键词: 提取罐 浓缩器
您现在的位置: 浙江启派智能 > 技术支持 > 技术文章 > 中药提取液的浓缩设备-中药提取液的浓缩设备原理

中药提取液的浓缩设备-中药提取液的浓缩设备原理

浏览 265次发布时间:2024-04-08 

本文目录一览表:

  • 一、浓缩的方法与设备(执业药师药剂学辅导精华)
  • 二、提取浓缩设备有哪些种类
  • 三、中药提取设备都有那些?
  • 四、中药醇沉工艺及设备浅析
    • 一、浓缩的方法与设备(执业药师药剂学辅导精华)

      (一)常压浓缩:

      被浓缩液体中的有效成分应是耐热的,该法耗时较长,易使成分水解破坏。

      (二)减压浓缩优点是:

      ①压力降低,溶液的沸点降低,能防止或减少热敏性物质的分解;②增大了传热温度差,蒸发效率提高;③能不断地排除溶剂蒸汽,有利于蒸发顺利进行;④沸点降低,可利用低压蒸医学教育|网收集整理汽或废气作加热源;⑤密闭容器可回收乙醇等溶剂。但是,溶液沸点下降也使粘度增大,又使总传热系数下降。

      1.减压蒸馏器在减压及较低温度下使药液得到浓缩,同时可将乙醇等溶剂回收。

      2.真空浓缩罐用水流喷射泵抽气减压,适于水提液的浓缩。

      3.管式蒸发器

      (三)薄膜浓缩特点:

      ①浸提液的浓缩速度快,受热时间短;②不受液体静压和过热影响,成分不易被破坏;③能连续操作,可在常压或减压下进行;④能将溶剂回收重复使用。

      1.升膜式蒸发器适用于蒸发量较大,有热敏性、粘度适中和易产生泡沫的料液。不适用高粘度、有结晶析出或易结垢的粒液。

      2.降膜式蒸发器适于蒸发浓度较高、粘度较大的药液,由于降膜式没有液体静压强作用,沸腾传热系数与温度差无关,即使在较低传热温度差下,传热系数也较大,对热敏性药液的浓缩更有益。

      3.刮板式薄膜蒸发器适于高粘度、易结垢、热敏性药液的蒸发浓缩,但结构复杂,动力消耗大。

      4.离心式薄膜蒸发器适于高热敏性物料蒸发浓缩。

      (四)多效浓缩

      可节省能源,提高蒸发效率。

      按药液加入方式的不同把三效蒸发分为四种流程。①顺流加料法。②逆流加料法。③平流加料法。④错流加料法。

      注意:①真空度过大或过小,均影响浓缩效率。②浓缩至一定程度时,料液极易产生泡沫,出现跑料。③一效加热器蒸汽压力应保持在设计范围内,若其压力明显升高,可能是收膏时膏料在管壁结垢而影响传热,应打开加热器清除垢层。

      二、提取浓缩设备有哪些种类

      提取浓缩设备种类包括如下:
      1、提取浓缩设备种类:浓缩罐,多功能刮板浓缩罐,旋转薄膜蒸发器,单效、多效升膜式或降膜式蒸发器,外循环一效、二效、三效蒸发器,强制循环式蒸发器。
      2、多功能提取罐:本装置可用于中药以及食品、生物、化工等行业的水煎、温浸、热回流、渗漉提取、芳香成份提取、残渣有机溶媒回收,还可组成强制循环提取、罐组式逆流提取等多种操作工艺。本装置既可在常压条件上操作,也可在真空情况下操作。
      3、真空减压浓缩罐:是在真空系统下操作的夹套浓缩罐。是本公司在上海、江苏科研、设计单位的大力配合下,针对国内同类设备在使用上的经验和原设计中的缺陷而改进的系列产品。
      4、ZN-C型蒸发浓缩器是在ZN型基础上的改进型.用途是是通用性的蒸发装置,可广泛用于制药、食品、化工、轻工等行业的水、醇或其他有机溶媒料液的蒸发浓缩。本设备适用于中药热回流提取,浓缩、酒精蒸馏以及药渣的酒精回收等,可一罐多用。
      5、多功能刮板浓缩罐:本设备为食品、医药、化工等行业通用装备,主要用于固液、液液特别是高粘度物料的混合、反应。设备搅拌系统为同轴输出,两组搅拌正、反向旋转,又因其独特的浆叶设计,特别是在物料粘性比较大的工况下,物料产生的混合、反应不充分,物料抱轴及物料粘壁等难题都将迎刃而解。

      中药醇沉工艺及设备浅析

      三、中药提取设备都有那些?

      中药提取的设备非常多,用途广泛。常见的中药厂提取设备主要有多功能提取罐、浓缩器、过滤器、乙醇沉淀罐

      四、中药醇沉工艺及设备浅析

      1 前言
      在中药生产过程中,乙醇沉淀法是常用于中药水提取液的纯化精制方法。该法的原理是,药材先经水煎提取,其中生物碱、有机酸盐、氨基酸类等水溶性有效成分被提取出来,同时也浸提出很多水溶性杂质。醇沉法就是利用有效成分能溶于乙醇而杂质不溶于乙醇的特性,在加入乙醇后,有效成分转溶于乙醇中而杂质则被沉淀出来。醇沉的目的是为了除去杂质保留药物有效成分,因而醇沉单元操作工艺及其设备的适用性将密切关系着中药产品的安全性、稳定性和有效性,与产品的剂型和质量是不可分割的有机整体。 2 影响醇沉工艺的因素 2. 1 初膏浓度及温度
      为了保证醇沉时尽量除去杂质,同时减少有效成分损失和乙醇耗量,一般要将药材水煎液浓缩到一定浓度的初膏。初膏浓度过高,则药液黏稠度较大,乙醇与药液难以充分接触,所产生的沉淀易包裹药液,造成有效成分损失;初膏浓度过低则药液量较大,需耗费大量乙醇。因此,选择适宜的初膏浓度对水提醇沉工艺非常重要。孙月霞[ 1 ]等对板蓝根水提取液进行实验研究,得出了初膏浓度为1∶1~1∶2之间。实验研究和文献数据分析表明,初膏浓度并非决定醇沉工艺分离纯化的关键性因素,但它决定最少的乙醇用量。 2. 2 乙醇用量及乙醇浓度
      通常当含醇量为50 ~60 时可除去淀粉等杂质;含醇量达60 时,无机盐开始沉淀;含醇量达75 以上时,可除去蛋白质等杂质,当含醇量达80 时,几乎可除去全部淀粉、多糖、蛋白质、无机盐类杂质,但是鞣质、水溶性色素、树脂等不易除去[ 2 ]。
      醇沉液中含醇量的高低与药物有效成分的溶解有着密切的关系,随着醇沉液含醇量的加沉淀加快[ 3 ] ,通常醇沉液的含醇量在60 ~75 之间。醇沉的含醇量如在70 ~75 之间,一般宜用90 左右的乙醇,此时所耗乙醇体积较少,与用95 浓度的乙醇相比,回收蒸馏要容易得多,乙醇单耗和能源消耗亦低;若醇沉液含醇量低,则所用乙醇浓度亦可相应低些。
      肖琼[ 4 ]等专门研究了乙醇浓度和乙醇总量对中药醇沉工艺的影响。结果表明,醇沉精制过程中当乙醇总量低于某一临界乙醇总量时,醇溶物的量随乙醇用量增加而增加;高于临界乙醇总量时,增加趋势减缓直至不再增加。 2. 3 醇沉温度与时间 醇沉时间与罐内液温有直接的关系。醇沉温度低,沉淀物析出与沉降的速度加快,所需的静置时间短,反之则长.
      加醇时药液温度不能过高,主要以防止乙醇挥发损耗。一般等含醇药液慢慢降至室温时,再移至冷库中,于5~10℃下静置24~48 h,若含醇药液降温太快,微粒碰撞机会减少,沉淀颗粒较细,难于过滤。可见,静置时间过长是导致操作周期过长的主要原因。 2. 4 加醇方式
      在中药生产过程的醇沉工艺中,主要是将乙醇导入常温或低温浸膏中,进行沉析,醇沉初始就加入大量高浓度乙醇,倘若搅拌不匀未能将乙醇分散,造成局部区域含醇量过高,淀粉、蛋白质类迅速沉析并包裹浓缩液。随着乙醇的增加包裹层质地越来越致密而难以分散,势必影响醇沉效果。分次醇沉或以梯度递增方式逐步提高乙醇浓度,有利于除去杂质,以减少有效成分的损失[ 5 ]。但此时醇沉操作较为麻烦,乙醇用量也大。
      有时,为了减少乙醇耗量,降低生产成本,将水煎提取液浓缩至规定比重后先放置沉淀桶内沉淀24 h,弃去沉淀物,再加入乙醇进行沉淀[ 6 ]。 2. 5 搅拌速度
      搅拌在醇沉过程中的作用与在其他工艺过程中的作用相似,有利于提高药液与乙醇的相际接触面积,提高药液与乙醇的均一性。
      一般情况下,随着醇含量的增加,沉析速度加快,沉析完全,当醇含量达到80 时,几乎可除去全部蛋白质、多糖和无机盐类杂质。但是随着醇沉浓度的升高,有效成分易被沉淀物包裹而造成损失。因此,醇沉时应提高搅拌速度,缓缓加入乙醇,以避免药液中局部乙醇浓度过高造成有效成分被沉淀物包裹所造成的损失。因此,在醇沉工艺中,搅拌速度应有一适宜的范围。搅拌速度过快则能耗增大,噪音增强,且对设备材质的要求有所提高。此外,过快的搅拌速度会使生成的沉淀颗粒过小,难于过滤;搅拌速度过慢,药液中局部乙醇浓度过高,造成沉析物包裹有效成分,造成有效成分的损失,同时也会造成沉淀物黏连,难以过滤分离。因此,在醇沉时应根据物系的特征,选择适宜的搅拌速度以及乙醇的加入速度。 2. 6 原药材的影响
      原药材的性状及初步处理过程影响到所用乙醇的浓度及醇沉效果。屠家启[ 6 ]通过对板蓝根冲剂醇沉工艺的研究发现,如果所用原药材为新货(即当年采收的药材) ,药材中的糖分及黏液质较多,浓缩后的浸膏黏性大,制粒比较困难,此时选用的醇沉浓度应高于88 。原药材如为历年采收的陈货,或者库存时间已超过一年以上,则粉性较强,醇沉使用的乙醇浓度以88 为宜。叶荣科[ 7 ]等为改进小叶榕黄酮提取工艺,降低生产成本,对不同比例醇沉结果进行比较,得出结论:自然干燥叶总黄酮比烘箱干燥叶提取率要高,其沉淀效果与文献报道一致[ 8 ]。 3 目前醇沉工艺存在的不足 (1)醇沉过程操作周期长。目前影响醇沉操作周期的因素主要有两个:一是,水提液一般要冷至室温或更低温度才能加入乙醇;二是,醇沉后一般都要静置24~48 h才能抽取上清液。有的药材品种一次醇沉杂质沉淀不完全,特别是容易发生包裹浓缩液现象的品种,需要进行多次醇沉操作。醇沉次数的增加,乙醇的用量、单耗、耗能相应增多。丁水平[ 9 ]等研究了醇沉次数、醇沉浓度对醇沉除杂效果的影响。 (2)排渣困难。醇沉后大量沉淀物因静置后聚集于罐底,造成沉析罐排渣困难。抽取上清液后,沉淀物往往需要再次加入热水使沉淀物融化才能排出,而且有些沉淀物是黏稠的糊状物须经挤压处理后才能排出,样使处理沉淀物过程费时费工。有的厂家针对排渣问题对沉析罐加了后续固液分离装置,将沉淀物用机械方法破碎再行排出。 (3)上清液抽取过程困难。通常沉析罐都装有手动摇杆,以控制罐内抽取清液管道水平面的高低,但在实际操作中,要看清罐内液面情况是十分困难的。此外,沉淀物堆积于罐底不会呈理想的水平面,所以抽取上清液往往会不完全,从而导致乙醇的损耗和有效成分的损失。 (4)乙醇耗量大。醇沉次数的增加,沉淀物的聚集以及上清液抽取不完全等都会造成乙醇用量的增加。李尧[ 10 ]等从数学推理的角度,对中药生产中的水提醇沉法的含醇量问题进行了探讨,得出了用醇量的经验公式。 (5)有效成分损失严重[ 11~13 ] 。由于醇沉时大量沉淀物的出现,可吸附、包埋部分有效成分而造成损失。韩桂茹等研究了水提醇沉对中药各类有效成分的影响。结果表明,醇沉后有效成分的损失在10 到50 [ 14 ]。 (6)成品稳定性差。一方面,醇沉时有效成分的损失,使药品质量难以稳定;另一方面,醇处理的液体制剂在保存过程中易产生沉淀和黏壁现象。 4 醇沉设备
      目前国内中药生产厂家使用的醇沉设备为带有夹套的筒体、椭圆封头、锥形底的圆筒体及特殊的微调旋转出液管组成。锥形底锥角为60~90 ℃,醇沉后杂质沉淀于锥底,清液通过管道吸出。罐底安装球阀(浆状或悬浮状沉淀物排渣)或气动出渣口(渣状沉淀物排渣) 。
      沉析罐的搅拌,一般都为固定转速,无法根据物系的特征进行转速的调节。操作时,开启搅拌,加入乙醇,由于乙醇直接通过管道加入。因此使得药液中乙醇局部浓度过大,容易包裹浓缩液产生块状沉淀物。因此,目前使用的沉析罐搅拌效果一般较差,不利于乙醇在药液中的分散与混合,既造成有效成分损失又产生块状沉淀物,不利于排渣。因此,醇沉后必须要经过长时间的静置分层,以分离药液与沉淀物。静置沉淀完成后,开启上清液出料阀,将上清液抽出,利用转动手轮微调罐内出液管的角度,通过沉析罐视镜与上清液出液管上的玻璃视管观察出液情况。但在实际操作中罐内液面往往很难观察清楚,而且所形成的沉淀物表面往往不是理想的平面,因此,很难将沉淀后的上清液抽取完全,尤其是形成絮状沉淀物时更难操作,往往会造成有效成分的损失和乙醇的损耗。同时,长时间静置沉淀之后,所形成的沉淀物往往板结成块,很难通过常规的方法排放,尤其是处理黏性较大的沉淀物时更难排出罐体。 5 结语
      在醇沉过程中,由于醇沉工艺及醇沉装置存在的效率低下、耗醇量大、排渣困难以及醇沉操作周期长等不足,长期制约着中药生产过程的现代化进程。中药工程的发展,必须依赖于工艺及装置的改进。醇沉工艺及装置的设计应与所采用的工艺相适应。从改变醇沉工艺着手,以改善沉淀物颗粒成型状态为研究目的,改变目前醇沉工艺中,沉淀物不易排泄,沉淀物与药液分离困难、乙醇消耗量过大等种种弊端,尤其是沉淀物与药液的分离不能用一简单易行的装置进行固液分离的矛盾,使醇沉工艺及装置适应于现代工程发展的需要。
      一种新的沉析罐[ 15 ] ,以改变沉淀物的颗粒成型状态为研究目的,在沉析罐中设置了乙醇分布器,以及带有可变转速的搅拌桨,使形成的沉淀物为一种疏松的易于固液分离的颗粒,该装置大大缩短了醇沉操作周期,无需长时间静止分层,可直接进行固液分离,且沉淀物与药液分离完全。实验数据表明:采用新的沉析装置对药液中有效成分没有任何的改变,为一种有效的新型的醇沉装置。

      以上文章是对中药提取液的浓缩设备-中药提取液的浓缩设备原理问题和相关问题的解答,中药提取液的浓缩设备-中药提取液的浓缩设备原理的问题希望对您有用!中药提取液的浓缩设备-中药提取液的浓缩设备原理建议选择启派智能厂家,启派智能是一家创新型智能装备企业,它生产的中药提取液的浓缩设备-中药提取液的浓缩设备原理能够为用户提供合理化的解决方案。

北京上海天津重庆安徽福建广东广西贵州甘肃海南河南黑龙江湖北湖南河北江苏江西吉林辽宁宁夏内蒙古青海山东山西陕西
微信公众号
微信号
为您提供咨询与评估、工程设计、工艺设计、
自控工程、制造 与采购、施工及安装、项目管理、验证交钥匙等整体系统解决方案

咨询热线

400-678-3557

提取萃取系列
蒸发浓缩系列
生物发酵系列
膜分离类系列
纯化分离系列
配液粉针系列
塔 器 类 系 列
紫铜蒸馏系列
清洗灭菌系列
干 燥 类 系 列
非标容器系列
工艺系统工程
智能工厂方案